DYNAMIC MODEL OF QUADROTOR AND PARAMETER IDENTIFICATION

Besoin d'aide ?

Nombre de téléchargements - 0

Catégorie :

Vous avez une question, contacter notre assistance par E-mail : admin@clicours.com

Table des matières

CHAPTER 1 INTRODUCTION
1.1 Background
1.2 Quadrotor Dynamics and control
1.2.1 UAV Modeling
1.2.2 Control methods
1.2.2.1 Nominal system control methods
1.2.2.2 Uncertain system control methods
1.3 Motivation
1.4 Objectives
1.5 Methodology Overview
1.6 Thesis Contribution
1.7 Thesis Outline
CHAPTER 2 DYNAMIC MODEL OF QUADROTOR AND PARAMETER IDENTIFICATION
2.1 Theoretical concept of the quadrotor
2.2 Transformation between the inertial frame and the body frame of the quadrotor
2.3 Angular Velocities
2.4 Quadrotor Dynamics: Newton-Euler method
2.5 The Relationship between the forces and the torques of the quadrotor
2.6 Parameters Identification
2.6.1 Experimental Method
2.6.2 Theoretical Method
CHAPTER 3 ROBUST OBSERVER-BASED DYNAMIC SLIDING MODE CONTROLLER FOR A QUADROTOR UAV
3.1 Abstract
3.2 Introduction
3.3 Dynamic modeling of a quadrotor
3.4 Problem formulation
3.5 The combined NDO-based backstepping and sliding mode control
3.5.1 Nonlinear disturbance Observer design
3.5.2 Backstepping sliding mode control
3.5.2.1 Position subsystem controller design
3.5.3 Attitude controller design
3.6 Stability analysis of the overall closed loop system
3.7 Parameter Identification for the Quadrotor Prototype
3.8 Simulation results
3.9 Experimental results
3.10 Conclusion
CHAPTER 4 ROBUST SLIDING-MODE TRACKING CONTROL OF QUADROTOR
4.1 Abstract
4.2 Introduction
4.3 Dynamical model of a quadrotor
4.3.1 Problem statement
4.4 Super-twisting Sliding Mode Observer
4.5 Tracking control laws for second order systems in vector form
4.6 Tracking control design for the quadrotor
4.7 Observer based tracking control analysis
4.8 Results discussion
4.8.1 Numerical Results
4.8.2 Experimental Results
4.9 Conclusion
CHAPTER 5 DOUBLE-SIDED OBSERVER FOR ROBUST TRAJECTORY TRACKING CONTROL OF QUADROTOR UAV
5.1 Abstract
5.2 Introduction
5.3 Dynamic modeling of a quadrotor
5.4 Observer-based tracking for the quadrotor
5.5 Disturbance observer designs
5.5.1 A kernel disturbance observer (KDO)
5.5.2 A nonlinear disturbance observer (NDO)
5.5.3 A super-twisting sliding mode observer (STO)
5.6 Tracking control designs for the quadrotor
5.7 Observer-based tracking control analysis
5.8 Results and discussion
5.8.1 Simulation Results
5.8.2 Disturbance model: Chaotic 1
5.8.3 Disturbance model: Chaotic 2
5.8.4 Disturbance model: Linear
5.8.5 Disturbance model: Constant
5.9 Conclusion
CONCLUSION

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *