Relations différentielles entre les charges et les efforts

DIAGRAMMES DES EFFORTS ET DES MOMENTS

En général, les efforts et moments agissant dans différentes sections varient le long de la poutre. Entre autres les valeurs maximales et minimales de ces efforts et moments sont d’une grande importance pour la sécurité de la poutre, on s’intéresse donc à tracer des courbes qui montrent comment changent les efforts et les moments d’une section à une autre, on appelle ces courbes les diagrammes des efforts et des moments. On se limite dans cette section à l’étude des diagrammes des efforts et des moments dans les poutres à deux dimensions (plan XOY), ce qui réduit le nombre des efforts et des moments à trois, à savoir un effort normal N, un effort tranchant Ty, et un moment fléchissant Mz. 3.3.1 Les zones des efforts internes dans une poutre La variations d’un effort ou moment dans une zone (ou tronçon) d’une poutre est caractérisé par une même loi mathématique. En pratique l’extrémité d’une zone est imposée par l’extrémité de la poutre (extrémité libre appuis de rive ou intermédiaire), changement brutal de la charge, ou le changement brutal de la direction de l’axe de la poutre (Fig. 3.6).

Relations différentielles entre les charges et les efforts

Ils existent des relations différentielles entres les forces extérieures et intérieures et qui constituent la base de la méthode directe pour la détermination des efforts internes. Pour déterminer ces relations on considère un cas de charge arbitraire d’un système de sollicitations donné dans un plan (Fig. 3.7) avec: qx : intensité de la charge extérieure selon l’axe X qy : intensité de la charge extérieure selon l’axe Y La relation entre l’intensité de la charge qx est l’effort normal est obtenue par l’équation d’équilibre d’un élément dx et peut être exprimée par: N – qx(x)dx – N – dN = 0 ⇒ dN/dx = -qx(x) Entre l’intensité qy, l’effort tranchant T et le moment fléchissant M qui agissent dans une certaine section, existent les relations différentielles suivantes: T – qy(x)dx – T – dT = 0 ⇒ dT/dx = -qy(x) M + Tdx – qy(x)dx²/2 – M – dM= 0 en négligeant le terme quadratique en dx² on obtient: dM/dx = T où d²M/dx² = -qy

Construction des diagrammes des efforts internes d’une poutre

Pour pouvoir tracer les diagrammes, il est indispensable de connaître toutes les forces extérieures y compris les réactions qui doivent être préalablement déterminées. Pour déterminer les réactions d’une poutre isostatique (efforts de liaison), il faut écrire les conditions d’équilibre (la loi fondamentale de la statique). Pour une poutre articulée isostatique, aux trois équations fondamentales de la statique s’ajoute une équation supplémentaire: en effet par rapport au centre de l’articulation, la somme des moments créés par toutes les forces situées d’un côté de cette dernière est nulle Le tracé des diagrammes des efforts et des moments peut être fait à l’aide des équations analytiques ou par la méthode directe. La méthode analytique consiste à trouver les expressions des efforts et moment pour chaque zone en fonction de l’abscisse x de la ligne moyenne de la poutre. Ces expressions peuvent être établies par les équations d’équilibre de toutes les forces (y compris les réactions des appuis) appliquées à gauche ou à droite de la section considérée. Une fois que ces expressions sont déterminées, on peut alors tracer leurs diagrammes. La méthode directe est très rapide généralement utilisée dans les cas de chargements simples. Elle consiste à déterminer les valeurs numériques des efforts intérieurs aux extrémités de chaque tronçon. Ces points sont joints par des lignes ou courbes dont les caractéristiques sont déterminées sur la base des relations différentielles entre les efforts intérieurs et les forces extérieures citées ci-dessous. a) Sur les tronçons où il n’y a pas de charge répartie, le diagramme des T est délimité par des droites parallèles à la base tandis que le diagramme des M l’est, dans le cas le plus général, par des droites obliques. b) Sur les tronçons où la poutre supporte une charge répartie, le diagramme des T est délimité par des droites obliques tandis que celui des M l’est par des paraboles carrées. Quand on trace le diagramme des M du côté des fibres tendues, l’incurvation de la parabole est dirigée dans le sens contraire de la charge qy. c) Les maximums et minimums des M coïncident avec les sections où T=0. d) Dans les sections où les charges concentrées sont appliquées à la poutre, le diagramme des T est caractérisé par des passages brusques aux niveaux de ces charges, celui des M, il y aura des brisures dont la pointe sera dirigée dans le sens de la ligne d’action de la force. e) Dans les sections où des moments concentrés sont appliqués à la poutre, le diagramme des moments sera marqué par des passages brusques d’une valeur proportionnelle à ces moments tandis que sur le diagramme des T, il n’ y aura aucune modification.

Tracé des diagrammes pour des portiques isostatiques

On appelle portique les systèmes de poutres reliées entre elles par des noeuds rigides (Fig. 3.8). Il est convenu d’appeler les poteaux ou montants les éléments verticaux ou inclinés d’un portique, tandis que ceux longitudinaux, poutres ou traverses. Ces assemblages trouvent une large application dans le domaine du génie civil. Ils sont très utilisés comme systèmes de base dans les constructions telles que les bâtiments et les hangars. Généralement les portiques sont des systèmes hyperstatiques, mais on se limitera ici à l’étude des portiques isostatiques. Les règles de construction des diagrammes sont celles utilisées dans le cas de poutres simples, car chaque élément du portique est considéré ainsi. Les conventions de signe préalablement établies restent valables; les ordonnées positives des N et des T sont portés de façon à être dirigées vers le coté extérieur, les diagrammes des moments positifs sont tracés du coté des fibres tendues.

Tracé des diagrammes pour poutres curvilignes (arcs)

Pour des raisons esthétiques ou de résistance, on utilise des éléments structurels ayant des formes curvilignes (ou en arcs). Dans cette section, on suppose que l’axe de la poutre curviligne représente un arc de cercle. Pour déterminer les expressions analytiques des efforts internes de ces éléments, on utilise la méthode des sections et on écrit les équations d’équilibre pour une section donnée en projetant les forces suivant l’axe parallèle à l’effort normal N et l’axe perpendiculaire à ce dernier. La somme des moments de toutes les forces est calculée par rapport au centre de gravité de la section pour l’expression de M. On note aussi qu’ il est commode d’utiliser un système de coordonnées polaires pour parcourir la ligne moyenne de l’élément.

Cours gratuitTélécharger le cours complet

Télécharger aussi :

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *