Propagation de fronts structurés en biologie – Modélisation et analyse mathématique

Propagation de fronts structurés en biologie –
Modélisation et analyse mathématique

Equations cinétiques de transport-réaction 

Le cas d’un continuum de vitesses Dans cet article en collaboration avec Vincent Calvez et Grégoire Nadin, nous étudions l’existence et la stabilité d’ondes progressives solutions d’un modèle cinétique de transport-réaction. Le modèle décrit des particules qui se déplacent en changeant de direction via un processus de saut en vitesse (« velocity-jump process ») et qui prolifèrent via un terme de réaction de type monostable. Le caractère borné ou non se révèle être une condition nécessaire et suffisante pour l’existence d’ondes progressives positives. La vitesse minimale d’existence de ces ondes est obtenue à partir d’une relation de dispersion explicite. Nous construisons les ondes en utilisant une technique de sur- et sous- solutions et prouvons qu’elles sont stables (dans un sens faible) dans un espace L2 à poids. Dans le cas d’un espace de vitesses non-borné, nous prouvons que la propagation est sur-linéaire. Il apparait que la vitesse de propagation dépend fortement de la décroissance à l’infini de la distribution stationnaire. Dans le cas d’une distribution Gaussienne, nous prouvons que le front se propage comme x ∼ t 3 2 .

Accelerating fronts for a Gaussian distribution

 Accelerating fronts in reaction-diffusion equations have raised a lot of interest in the recent years. They occur for the Fisher-KPP equation (7.2) when the initial datum decays more slowly than any exponential [123]. They also appear when the diffusion operator is replaced by a nonlocal dispersal operator with fat tails [144, 153, 107], or by a nonlocal fractional diffusion operator [46, 45]. Recently, accelerating fronts have been conjectured to occur in a reactiondiffusion-mutation model which generalizes the Fisher-KPP equation to a population structured with respect to the diffusion coefficient [34]. Here, we investigate the case of a Gaussian distribution M. The spreading rate hxi = O(t 3/2) is expected in this case (heuristics, and see [166]). We prove that spreading occurs with this rate. For this purpose, we build suitable sub- and supersolution which spread with this rate. We split our results into two parts, respectively the upper bound and the lower bound of the spreading rate. The reason is that the constructions are quite different. The construction of the supersolution relies on a first guess inspired from [107], plus convolution tricks which are made easier in the gaussian case. On the other hand, the construction of the subsolution is based on a better comprehension of the growth-dispersion process. Again, some technical estimates are facilitated in the gaussian case. We believe that these results can be generalized to a large class of distributions M, at the expense of clarity. 

Preliminary results 

We first recall some useful results concerning the Cauchy problem associated with (2.1) : well-posedness and a strong maximum principle. These statements extend some results given in [69]. They do not rely on the boundedness of V. Proposition 2.13 (Global existence : Theorem 4 in [69]). Let g0 a measurable function such that 0 ≤ g 0 (x, v) ≤ M(v) for all (x, v) ∈ R × V. Then the Cauchy problem (2.1) has a unique solution g ∈ C0 b (R+ × R × V) in the sense of distributions, satisfying (∀(t, x, v) ∈ R+ × R × V) 0 ≤ g(t, x, v) ≤ M(v). The next result refines the comparison principle of [69] in order to extend it to sub and supersolutions in the sense of distributions and to state a strong maximum principle. Its proof is given in Appendix. Proposition 2.14 (Comparison principle). Assume that u1, u2 ∈ C(R+, L ∞(R × V)) are respectively a super- and a subsolution of (2.1), i.e. ∂tg1 + v∂x g1 ≥ 

Existence and construction of travelling wave solutions 

We assume throughout this Section that V = Supp M is compact. We construct the travelling waves for c ∈ [c ∗ , vmax). The proof is divided into several steps. It is based on a sub and supersolutions method. 69 Chapitre 2. Equations cinétiques de transport-réaction : Le cas d’un continuum de vitesses 2.3.1 The linearized problem. The aim of this first step is to solve the linearized equation of (6.2) at +∞, in the regime of low density f  1. Such an achievement gives information about the speed and the space decreasing rate of a travelling wave solution of the nonlinear problem, as for the Fisher-KPP equation. The linearization of (6.2) at f = 0 writes (v − c)∂x f = 

 Construction of the travelling waves in the regime c ∈ (c ∗ , vmax)

Let c ∈ (c ∗ , vmax), where c ∗ denotes the minimal speed of Proposition 2.16. In order to prove the existence of travelling waves, we will prove that the solution of the following evolution equation, corresponding to equation (2.1) in the moving frame at speed c, converges to a travelling wave as t → +∞ : ( ∂tg + (v − c)∂x g = M(v)ρg − g + rρg (M(v) − g) in R × V, g(0, x, v) = f(x, v) for all (x, v) ∈ R × V. (2.20) The well-posedness of equation (2.20) immediately follows from Proposition 2.13. Let now derive some properties of the function g from Proposition 2.14. Lemma 2.21. For all (t, x, v) ∈ R+ × R × V, one has f(x, v) ≤ g(t, x, v) ≤ f(x, v). Proof of Lemma 2.21. As f is a subsolution of (2.20) and f is a supersolution of (2.20), with f(x, v) ≤ f(x, v) for all (x, v) ∈ R × V, this result is an immediate corollary of Proposition 2.14. Lemma 2.22. For all (t, v) ∈ R+ × V, the function x ∈ R 7→ g(t, x, v) is nonincreasing. Proof of Lemma 2.22. Take h ≥ 0 and define gh(t, x, v) = g(t, x + h, v). Then as f is nonincreasing in x, one has gh(0, x, v) ≤ g(0, x, v) for all (x, v) ∈ R × V. Proposition 2.14 yields that gh(t, x, v) ≤ g(t, x, v) for all (t, x, v) ∈ R+ × R × V. Lemma 2.23. For all (x, v) ∈ R × V, the function t ∈ R+ 7→ g(t, x, v) is nonincreasing. Proof of Lemma 2.23. Take τ ≥ 0 and define gτ(t, x, v) = g(t + τ, x, v). Then Lemma 2.21 yields that gτ(0, x, v) ≤ f(x, v) = g(0, x, v) for all (x, v) ∈ R × V. Hence, Proposition 2.14 gives gτ(t, x, v) ≤ g(t, x, v) for all (t, x, v) ∈ R+ × R × V. Lemma 2.24. The family (g(t, ·, ·))t≥0 is uniformly continuous with respect to (x, v) ∈ R × V. Moreover, for any A ∈ (c ∗ , vmax), the continuity constants does not depend on c ∈ (c ∗ , A). Proof of Lemma 2.24. We begin with the space regularity. Let |h| < 1. The function g(0, x, v) = f(x, v) = min{M(v),e −λxFλ(v)} is such that log g(0, x, v) is Lipschitz-continuous with respect to x. Therefore there exists a constant C0 > 0 such that for all (x, v) ∈ R × V, we have g(0, x + h, v) ≤ (1 + C0|h|)g(0, x, v). As 1 + C0|h| > 1, it is easily checked that (t, x, v) 7→ (1 + C0|h|)g(t, x − h, v) is a supersolution of (2.20). Hence Proposition 2.14 yields that g(t, x, v) ≤ (1 + C0|h|)g(t, x − h, v) for all (t, x, v) ∈ R+ × R × V . Hence the function log g is Lipschitz continuous with respect to x. Since the function log g is bounded from above, g = exp(log g) is also Lipschitz continuous with respect to x. The Lipschitz constant is uniform with respect to c ∈ (c ∗ , A) and λ ∈ (0, 1/(vmax − c)). We now come to the velocity regularity. For the sake of clarity we first consider the case where M is C 1 on V. The function v 7→ g(0, x, v) is C 1 too. We introduce gv = ∂vg. It satisfies the following equation ∂tgv + (v − c)∂x gv + (1 + rρg)gv = (1 + r)M0 (v)ρg − ∂x g in R × V . 

 Construction of the travelling waves with minimal speed c ∗ 

Proof of the existence in Theorem 2.2 when c = c ∗ . Consider a decreasing sequence (cn) converging towards c ∗ . We already know that for all n, equation (2.1) admits a travelling wave solution un(t, x, v) = fn(x − cnt, v), with fn(−∞, v) = M(v) and fn(+∞, v) = 0, and z 7→ fn(z, v) is nonincreasing. Up to translation, we can assume that ρfn (0) = 1/2. Moreover, Lemma 2.24 ensures that the functions (fn)n are uniformly continuous with respect to (x, v) ∈ R × V since the continuity stated in Lemma 2.24 is uniform with respect to c ∈ (c ∗ , A) for any A ∈ (c ∗ , vmax). Thanks to the Ascoli theorem and a diagonal extraction process, we can assume that the sequence (fn)n converges locally uniformly in (x, v) ∈ R × V to a function f . Clearly f satisfies (6.2) in the sense of distributions. Moreover, as f is nonincreasing with respect to x, one could recover the appropriate limits at infinity with the same arguments as in the proof of the existence of travelling waves with speeds c > c ∗ . 2.3.5 Non-existence of travelling wave solutions in the subcritical regime c ∈ [0, c ∗ ). Lemma 2.25. Assume that infV M(v) > 0. For all 0 ≤ c < c ∗ there exists c < c0 < c ∗ and a nonnegative, arbitrarily small, compactly supported function h(x, v) which is a subsolution of (v − c 0 )∂x f = M(v)ρf − f + rρf (M(v) − f) in R × V . (2.22) Proof of Lemma 2.25. For the sake of clarity we emphasize the dependence of the function I (2.15) upon the growth rate r > 0 : Ir(λ; c) = Z V (1 + r)M(v) 1 + λ(c − v) dv . We denote by c ∗ r the smallest speed such that there exists a solution λ > 0 of Ir(λ, c) = 1 (see Proposition 2.16). Let δ > 0. By continuity we can choose δ so small that c < c ∗ r−δ . We claim that there exists (c 0 , λ 0 ) such that Ir−δ(λ 0 ; c 0 ) = 1, with c < c 0 < c ∗ r−δ and λ 0 ∈ C \ R. Indeed we know from the proof of Proposition 2.16 [Step 3] that λ ∗ r < 1/(vmax − c ∗ r ) under the assumption v 7→ M(v)/(vmax − v) ∈/ L 1 (V). Using a continuity argument we also have the strict inequality λ ∗ r−δ < 1/(vmax − c ∗ r−δ ), uniformly with respect to δ. The complex function λ 7→ Ir−δ(λ; c ∗ r−δ ) is analytic in a neighborhood of λ ∗ r−δ . Hence, the Rouché theorem yields that there exists c 0 < c ∗ r−δ such that the equation Ir−δ(λ; c 0 ) = 1 has a solution λ 0 ∈ C with λ 0 arbitrarily close to λ ∗ r−δ . We denote by F 0 (v) the corresponding velocity profile, F 0 (v) = (1 + r − δ)M(v) 1 + λ0(c 0 − v) , Z V F 0 (v) dv = 1 . By continuity we can choose c 0 and λ 0 such that Re 

Table des matières

Introduction
1 Motivations et cadre de la thèse
1.1 Évolution Darwinienne, dynamique adaptative des phénotypes et invasion de crapauds buffles
1.2 Mouvement collectif de bactéries, e.g. Escherichia coli
2 État de l’art et principaux outils
2.1 Dynamique spatiale : Equations de réaction-diffusion
2.2 Dynamique adaptative
2.3 Interactions chimiotactiques et ondes de concentration de bactéries : Keller-Segel et Dunbar-Alt
2.4 Un peu plus d’ondes cinétiques pour des équations issues de la physique
3 Résultats obtenus dans cette thèse
3.1 Un modèle cinétique à deux vitesses
3.2 Propagation dans des modèles cinétiques
3.3 Formalisme Hamilton-Jacobi pour des équations cinétiques de transport réaction (vitesses bornées)
3.4 Dynamique de populations structurées en espace-trait : Invasion des crapauds buffles
3.5 Approche Hamilton-Jacobi pour des populations structurées en espace trait
4 Perspectives et travaux en cours
Partie I Phénomènes de propagation pour des équations cinétiques
Chapitre 1 Etude d’ondes progressives pour un modèle à deux vitesses
Math. Models Methods Appl. Sci4, 1165 (2014)
Sommaire
1.1 Introduction
1.2 Numerical simulations
1.3 Travelling wave solutions : Proof of Theorems 1.1 and 1.2 
1.3.1 Characteristic equation
1.3.2 Proof of Theorems 1.1.(a) and 1.2.(a) : Obstruction for s < s∗(ε)
1.3.3 Proof of Theorem 1.1.(b) : Existence of smooth travelling fronts in the parabolic regime s ∈ [s(ε), ε−1)
1.3.4 Proof of Theorem 1.1.(c) : Existence of weak travelling fronts of speed s = ε −1 in the parabolic regime
1.3.5 Proof of Theorem 1.2.(b) : Existence of weak travelling fronts of speed s = ε
in the hyperbolic regime
1.3.6 Proof of Theorem 1.1.(d) and Theorem 1.2.(c)  Existence of supersonic travelling fronts s > ε
1.4 Linear stability of travelling front solutions 0
1.5 Nonlinear stability of travelling front solutions in the parabolic regime ε2F0(0) < 1 53
Chapitre 2 Equations cinétiques de transport-réaction : Le cas d’un continuum de vitesses
En révision (2014)
2.1 Introduction
2.2 Preliminary results
2.3 Existence and construction of travelling wave solutions
2.3.1 The linearized problem
2.3.2 Construction of sub and supersolutions when c ∈ (c
∗, vmax)
2.3.3 Construction of the travelling waves in the regime c ∈ (c∗, vmax)
2.3.4 Construction of the travelling waves with minimal speed c ∗
2.3.5 Non-existence of travelling wave solutions in the subcritical regime c ∈ [0, c∗)
2.3.6 Proof of the spreading properties
2.4 Proof of the dependence results
2.5 Stability of the travelling waves
2.5.1 Linear stability
2.5.2 Nonlinear stability by a comparison argument 86
2.6 Numerics
2.7 Superlinear spreading and accelerating fronts (V = R) 7 x
2.7.1 Nonexistence of travelling waves and superlinear spreading
2.7.2 Upper bound for the spreading rate in the gaussian case 0
2.7.3 Lower bound for the spreading rate in the gaussian case 3
Chapitre 3 Une équation eikonale cinétique
C. R. Math. Acad. Sci. Paris, 350(5–6) :243–248, (2012)
3.1 Large-scale limit and derivation of the Hamilton-Jacobi equation
3.2 Proof of Theorem 3.1
Chapitre 4 L’ approche Hamilton-Jacobi pour la propagation dans des équations cinétiques Soumis (2014)
4.1 Introduction
4.2 The phase ϕ
is uniformly Lipschitz
4.3 Hamilton – Jacobi dynamics – Proof of Theorem 4.4
4.3.1 Convergence of ϕ
121
4.3.2 Identification of the limit
4.3.3 Uniqueness of the viscosity solution
4.4 The eigenvalue problem (H4)
4.5 Asymptotics, numerics and comments
4.5.1 Further asymptotics
4.5.2 Study of the viscosity solution and of the speed of propagation
4.5.3 Numerical simulation
4.6 Remarks and perspectives in an unbounded velocity domain (e.g. V = Rn )
4.6.1 The Laplacian equation in an unbounded velocity domain
4.6.2 The Vlasov-Fokker-Planck equation
4.6.3 Formal computations on a confined non-local equation
Partie II Dynamique adaptative de populations structurées en espace et en trait phénotypique
Chapitre 5 Fronts d’invasion avec motilité variable : Répartition des phénotypes et accélération de l’onde
5.1 Phenotype selection and spatial sorting in the traveling wave
5.2 Spatial sorting and the invasion front
5.3 Front acceleration
5.4 Adaptive dynamics at the edge of the front
Chapitre 6 Ondes progressives pour un modèle non-local de dynamique des populations
Accepté pour publication dans Nonlinearity (2014)
6.1 Introduction
6.2 The spectral problem
6.3 Solving the problem in a bounded slab
6.3.1 A Harnack inequality up to the boundary
6.3.2 An upper bound for c
6.3.3 The special case c = 0
6.3.4 Uniform bound over the steady states, for 0 ≤ c ≤ c
6.3.5 Resolution of the problem in the slab
6.4 Construction of spatial travelling waves with minimal speed c
6.4.1 Construction of a spatial travelling wave in the full space
6.4.2 The profile is travelling with the minimal speed c
6.4.3 The profile has the required limits at infinity 69
Chapitre 7 Formalisme Hamilton-Jacobi pour des équations de réaction-diffusion non locales
Accepté pour publication dans Communications in Mathematical Sciences (2014)
7.1 Introduction
7.2 Regularity results (The proof of Theorem 7.3)
7.3 Convergence to the Hamilton-Jacobi equation (The proof of Theorem 7.2–(i))
7.4 Refined asymptotics (The proof of Theorem 7.2–(ii) and (iii))
7.5 Qualitative properties
7.6 Examples and numerics
7.6.1 Examples of spectral problems
7.6.2 Numerical illustrations of the dynamics of the front
Perspective : À propos de la dispersion cinétique en domaine non-borné
A.1 Introduction
A.2 Towards the limit equation when ε → 0
A.3 Uniqueness result for the limit system
A.4 Derivation of the fundamental solution of the limit system
Annexe
Illustrations numériques de modèles de populations avec compétition
Chapitre de livre : The Mathematics of Darwin’s Legacy Mathematics and Biosciences in Interaction,
pp 159-174 (2011)
B.1 Introduction
B.2 A model with a single nutrient
B.2.1 The chemostat
B.2.2 Rescaling
B.2.3 The constrained Hamilton-Jacobi equation
B.3 Competition models
B.3.1 The gaussian case without mutations
B.3.2 The NonLocal-Fisher equation
B.4 Numerical methods and branching patterns
B.4.1 Finite differences
B.4.2 The stochastic individual-based method
B.4.3 The convolution formula
B.5 Conclusion
Bibliographie

projet fin d'etudeTélécharger le document complet

Télécharger aussi :

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *