Architecture ATM : classical IP
• Un sous-réseau IP dans un réseau ATM
– Un serveur ARP
– Gère une table @ IP ?? @ ATM
• Lorsqu’une station ATM IP se connecte
– Elle connaît l’@ ATM du serveur ARP
• Configuration manuelle
– Elle s’enregistre auprès du serveur ARP
• Indique son adresse ATM et son adresse IP
• Lorsqu’une station ATM-IP veut émettre un datagramme IP vers une autre station ATM-IP
– Demande au ARP Serveur l’@ ATM de la station IP
– Ouvre un VC avec cette station ATM
– …
Architecture ATM : classical IP
• Lacunes :
– Pas de broadcast ou multicast IP
– Un seul serveur ARP : pas de redondance : pb si panne
• On peut avoir plusieurs sous-réseaux IP sur un réseau
ATM :
– Passe par un routeur ATM-IP pour communiquer
• ATM complexe avec IP :
– Mode non connecté (IP) avec techno en mode connecté (ATM)
• Rq : sur un même réseau ATM on peut avoir :
– Des VC ou VP permanents (ouverts en permanence) :
• LS informatique : interconnexions LANs
• Interconnexions PABX
– Des ELAN (plusieurs LANE)
– Des sous-réseaux IP
MPLS : buts
• MPLS : Multi Protocol Label Switching
• Protocole pour opérateurs de WAN IP
• Lacunes d’un réseau WAN IP « classique »
– Travail d’un routeur important
• Il doit étudier chaque datagramme
• Il doit extraire l’@ IP destinatrice du datagramme IP, consulter sa
table de routage et agir en conséquence
– Pas de partage de charge entre plusieurs liaisons
• Il n’y a qu’une route par destination
– Pas de routage qui tiendrait compte de qualités de service demandées
MPLS
• Les routeurs en bordure de réseau ajoutent (et enlèvent) une étiquette aux datagrammes selon :
– La route que devra emprunter le datagramme
– La classification du datagramme
• Prioritaire ou non, pour application avec QoS, …
• Les routeurs au cœur du réseau routent selon cette étiquette
– Rapide (plutôt de la commutation que du routage)
• Protocole pour mettre à jour les tables de routage des routeurs au cœur du réseau :
– Une fois par « flot»
– Choix de route / étiquette donc / origine, QoS, …
– Réservation de bande passante possible
Intégration téléphonie – informatique
• Intégration voix – données
• Intégration possible car :
– Téléphone et informatique utilisent :
• Mêmes câbles (FO, TP) et ondes (hertziennes ou radio)
• Eléments actifs similaires : les téléphones sont maintenant numériques
– Ordinateurs :
• Equipés de microphone et hauts-parleurs
• Pourraient remplacer les postes téléphoniques : poste « unique»
• Pourquoi intégrer ? : faire des économies
– En réseau d’entreprise
• Infrastructure et matériel : même réseau (plusieurs sens à réseau)
• Même équipe d’administration
– Dans les réseaux des opérateurs : mêmes économies
– Au niveau des utilisateurs : économies sur les communications
téléphoniques longues distances
• Le coût d’une communication téléphonique dépend de la distance
• Le coût d’une « communication » Internet est indépendante de la
distance
Intégration voix-données
• Pourquoi intégrer ? : apporter des nouveaux services
– Evolution des services informatiques
• Chat, mail ? mode de communication vocal (téléphonique)
– Evolution des services téléphoniques
• Communication téléphonique ? transfert de documents, vidéo, …
– Intégration des services
• Annuaires : « téléphoniques » et informatiques (LDAP)
• Messageries : vocales et électroniques
• Comment intégrer ?
– Normes existent : H323, SIP
– Solutions techniques (matériels) existent
– Législation s’assouplit : dérégulation du téléphone
– Différents niveaux d’intégration : tranchées ? réseau et services
• Rappel : contraintes téléphone :
– QoS (voir chapitre ATM précédent) difficiles sur réseau IP
– Existant qui fonctionne parfaitement : PABX à faire évoluer
…
Cours réseaux informatiques (2,55 MO) (Cours PDF)