Le programme de Johnny fonctionne, mais est écrit dans un style « procédural » plutôt qu’orienté objet. Il peut donc, à cet égard, être amélioré.
- Réflechissez à la solution de Johnny et essayez d’expliquer pourquoi elle n’est pas très bonne et comment elle pourrait être améliorée.
- Ecrivez une version améliorée (commencez par lire l’intégralité des recommandations avant de commencer à programmer) :
- Définissez une classe abstraite Expression qui déclarera une méthode abstraite evaluate.
- Créez des classes distinctes pour chaque type d’expressions (Number, Sum, Product) et faites les hériter de Expression.
- Vous pouvez éviter de la duplication inutile de code en créeant une classe abstraite intermédiaire BinOp qui contiendra les attributs leftOp et rightOp représentants respectivement les opérandes gauche et droit d’un expression binaire. Faites hériter Sum et Product de Binop.
- Adaptez la méthode main de la classe principale à votre nouvelle structure.
- Pour comparer la solution originale de Johnny à la votre, faites évoluer votre programme dans le sens suivant :
- Ajouter la possibilité de générer la représentation de votre expression sous la forme d’une chaîne de caractère. Par exemple si votre expression est le nombre 13, cette fonctionalité doit vous retourner la chaîne "13". Si c’est une Sum avec 12 et 13 comme leftOp et rightOp respectivement, la fonctionalité en question devra retourner la chaîne "12 * 13".
- Ajouter un nouveau type d’expression binaire : Modulo représentant des expressions binaires dont l’évaluation retourne le reste de la division entière de leftOp par rightOp.
Portez un regard critique à votre nouvelle version. Si vous avez dû faire du « copier-coller » de portions de votre code pour ajouter ces facilités, c’est qu’il y a encore des problèmes de conception. Essayer de faire en sorte qu’il n’y ait aucune duplication inutile de code.
Une fois satisfait de votre version, essayez d’ajouter les mêmes facilités au programme de Johnny.
Laquelle des deux versions a été la plus facile à modifier ?
Note : cet exercice a essentiellement pour but d’illustrer l’intérêt du polymorphisme. Afin de nous concentrer sur cet aspect nous nous autoriserons quelques « entorses » au principe d’une bonne encapsulation (privacité des attributs). Une fois que vous aurez réussi à produire une solution polymorphique et à en dégager l’intérêt par rapport au code d’origine, le soin vous est laissé de parfaire votre code en vous concentrant cette fois sur son encapsulation.