Endommagement en fatigue

Endommagement en fatigue

Lorsqu’un défaut ou un endommagement est présent au sein d’un composite stratifié, la matrice et l’interface fibre/matrice sont les premières à se dégrader en commençant par des défauts microscopiques comme la micro-fissuration de la matrice ou la décohésion fibre/matrice comme le montrent les figure 17a et figure 18. Les défauts deviennent plus importants, changent d’échelle et de vitesse d’apparition avec une coalescence des micro-défauts qui provoque des ruptures transverses, des délaminages qui sont observables sur la figure 17b, des ruptures de fibres observables sur la figure 17c et 18. Les structures, telles que les pâles d’éolienne, sont des pièces qui subissent aussi des charges répétées, aléatoires ou cycliques de plus ou moins forte intensité en superposition de son chargement nominal. Dès que le vent est suffisant pour entraîner aérodynamiquement la pâle, celle-ci subit un chargement dynamique aléatoire, avec une valeur moyenne et une amplitude aléatoires, dépendant du vent, et donc du temps. Par des méthodes de type RainFlow, tu peux ramener ces chargements aléatoires à des chargements cycliques types, générant un endommagement de fatigue équivalent. C’est pour cela qu’il faut prendre en compte le phénomène de fatigue dans l’étude de la structure car il conduit à des ruptures sous chargement plus faible que la limite de rupture sous chargement statique. Pour bien dimensionner la structure, il est donc nécessaire de prédire la durée de vie de la structure ou de la dimensionner avec une contrainte maximale inférieure à la limite de fatigue (seuil d’endurance).

En se plaçant à l’échelle du pli, le comportement sous charge cyclique des matériaux composites stratifiés montre une baisse des propriétés mécaniques de résistance en fatigue et une baisse sensible de certaines rigidités lorsque le niveau de chargement ou le nombre de cycles augmente. La variation relative de rigidité est l’effet global à l’échelle du matériau de l’endommagement, qui correspond à la dégradation à l’échelle locale puis globale du matériau, par amorçage et propagation local puis global de fissures. Cette chute des propriétés mécaniques est due à la fissuration interne qui s’amorce au sein du composite. L’évolution de la rigidité dépend beaucoup du type d’empilement et de la direction de sollicitation, mais il existe une évolution globale qui décrit l’endommagement des composites stratifiés, que montre la figure 20, comme l’explique Reifsnider dans ces études [57]. L’évolution de l’endommagement est généralement illustrée par une courbe S-N (Stress function of Number of cycle) aussi appelée courbe de Wöhler. Les travaux de Wang [58] ont permis d’identifier les différences de comportement en fatigue, d’un composite stratifié UD verre/époxy pour un essai de traction, dont le comportement est visible en figure 21 et un essai de flexion, dont les résultats sont visibles sur la figure 22 pour différentes valeurs de sollicitation.

Pour un essai de fatigue en traction comme sur la figure 21, Wang définie deux types de rupture qui dépendent de la contrainte maximale appliquée : un premier type (Type I) caractérisé par une rupture de fibres suivie par des délaminages et un second type (type II) caractérisé par une rupture aux interfaces fibres/matrice, due au cisaillement. Pour chaque type, une évolution en plusieurs stades est constatée, 3 stades pour le type I et 2 stades pour le type II. Pour le type I, un premier stade est mis en évidence avec soit une chute brutale du module d’Young (σmax > 700 MPa) où la charge maximale appliquée en fatigue est assez grande pour amorcer des ruptures de fibres, soit une phase d’accommodation pour des charges plus faibles où le module d’Young varie peu. Le deuxième stade correspond à une diminution progressive de la raideur qui s’explique par l’apparition de rupture de fibres et de délaminage, et leurs propagations. Le troisième stade correspond à une perte de raideur d’au moins 10% où la dégradation du module d’Young s’accélère jusqu’à rupture finale de l’éprouvette.

 

Cours gratuitTélécharger le document complet

Télécharger aussi :

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *