Correction d’exercices Brevet
On sait que OHA est rectangle en H, que [OA] est un rayon de la sphère donc OA = 10cm et que OH = 6. Il me manque la mesure de [AH]. Pour cette question je suis obligé de faire la figure sans déterminer cette mesure. 1) je trace deux droites perpendiculaire en un point H, je place un point O , à 6cm de H sur la première droite, je prend mon compas, écartement 10cm , pointe sèche sur O, et je trace un arc de cercle qui coupera la seconde droite en A. 2) Pour trouver la mesure de [HA], donc d’un rayon de (C), j’utilise le théorème de Pythagore. Comme OHA est rectangle en H, ce dernier nous permet d’affirmer que : OA² = AH² + OH², et donc que AH² = OA² – OH² = 10² – 6² = 64 Donc AH = =8cm Bordeaux 2000 1) R + IO = h donc IO = h – R = 19,2 – 12 = 7,2 cm Le triangle OIA est rectangle en I, d’après le théorème de Pythagore nous pouvons donc affirmer que : OA² = OI² + IA² IA² = OA² – OI² = 12² – 7,2² = 92,16 IA = = 9,6 cm 2) 3) 6 litres = 6 dm =6000 cm le volume occupé par l’eau est donc un parallélépipède de dimensions : 26cm, 24cm et x cm donc 6000 = 26 × 24×x 6000 = 624 x x = x = x 9,6cm Caen 2000 1) Les cubes ont des arrêtes de 10cm de long, donc le diamètre maximal des boules sera de 10cm. Le volume de chaque boule sera donc : Le volume des restes sera donc 2) le triangle OO1B est rectangle en O1. Donc d’après le théorème de Pythagore on a : OB² = OO1² + BO1² OB² = h² + BO1² h² = OB² – BO1² = 5² – 2,5² = 18,75 h = Nantes 2000 .
Nous avons une pyramide a base carrée, la base est d’aire : 30×30 = 900cm² Pour la pyramide SABCD avec A l’aire de la base. Donc : =5400 cm 2) la pyramide est coupée selon un plan parallèle a la base, la mini pyramide a une hauteur de 6cm (soit trois fois moins que celle de la grande pyramide), nous avons donc une réduction les longueur de la grande pyramide sont donc divisées par 3. les volumes seront divisés par 3 c’est-à-dire par 27. Pour la pyramide SEFGH = 5400 ÷ 27 = 200 cm 3) Le volume du récipient qui contient les chocolats sera donc de 5400 – 200 = 5200 cm Polynésie 2000 1) ABC est rectangle en B donc le théorème de Pythagore nous permet d’écrire : AC² = AB² + BC² = 6² + 6² =72 AC = = 6 2) le triangle ACG est rectangle en C donc le théorème de Pythagore nous permet d’écrire : AG² = AC² + GC² = 72 + 6² = 108 (= 3×36) AG = 3) la pyramide ABCGF est a base carrée, le carré en question est de 6cm de côté avec A l’aire de la base. = 72 cm REUNION 2000 1) avec A l’aire de la base. A = 3 × 3÷ 2 = 4,5 cm² Donc = 6 cm 2) a ) trivial b) une fois que tu as construit les triangles ASC, ASB et ABC tu peux reporter les mesures des côtés [BC], [CD] et [DB] , à l’aide de ton compas. Turquie 2000 1) Non, car il est situé sur un plan qui est parallèle a celui dans lequel est (HG). 2) Nous avons a faire a un pavé droit, donc ABCD est un rectangle , pour dessiner ce dernier je trace le segment [AB] et deux droites et ’ perpendiculaires à ce segment passant respectivement par A et par B.
puis je prend mon compas , écartement 5cm , pointe sèche en B, je trace un arc de cercle qui coupe la perpendiculaire à [AB] passant par A en D. je trace la perpendiculaire à [AD] passant par D , elle coupera ’ en C. 3) ABD est rectangle en A donc le théorème de Pythagore nous permet d’écrire : BD² = AB² + AD² AD² = BD² – AB² = 5² – 4² = 9 donc AD = 3cm le volume de la pyramide est : avec A l’aire de la base. = 16 cm Alors que le volume du parallélépipède est de 4×3×4 = 48. Le volume de la pyramide représente le tiers du volume du parallélépipède, or 1÷3 33,3% donc elle représente bien plus de 30% du volume.la difficulté se situe au moment ou l’on veut construire le triangle SBC, on ne connais pas a priori les mesures de [SB] et [SC] , et il est hors de question d’utiliser Pythagore pour les déterminer. On fera donc comme dans l’exercice Réunion 2000. je reporterais ces mesures avec mon compas à partir des triangles SAB et SAC.