Les réseaux satellite

Les réseaux satellite

Les réseaux satellite pour le transport des informations des entreprises ont connu un essor important au début des années 90 avant de tomber dans une grave crise de croissance au début des années 2000. Cette crise est due en grande partie à l’agressivité commerciale des opérateurs de réseaux de mobiles terrestres, qui, du fait d’une vive concurrence, ont pratiqué des tarifs très bas. Le nombre de clients pour les systèmes satellite est de ce fait resté assez limité, contribuant à confiner ces systèmes à un complément des systèmes terrestres. Les satellites de télécommunications de la première génération sont tous géostationnaires, c’est-à-dire qu’ils décrivent une orbite circulaire autour de la Terre dans un plan voisin de l’équateur, avec une vitesse angulaire égale à celle de la rotation de la Terre sur elle-même. Ils apparaissent ainsi comme sensiblement immobiles pour un observateur terrien, ce qui permet une exploitation simplifiée du satellite. Après avoir connu une éclipse éphémère, ces systèmes géostationnaires reviennent à la mode, sans pour autant relancer l’environnement spatial pour le transport de données. L’orbite d’un satellite géostationnaire se situe à 36 000 km de la Terre, ce qui impli- que un trajet aller-retour entre la Terre et le satellite d’approximativement 0,27 s. Ce très long délai de propagation a un impact important sur les techniques d’accès au canal satellite. À cette altitude, parmi trois satellites placés à 120˚ les uns des autres sur l’orbite géostationnaire, au moins l’un d’entre eux est visible d’un point quelconque de la Terre.

Le signal reçu par le satellite à une fréquence f1 est retransmis à une fréquence f2 vers l’ensemble des stations terrestres. Il se produit ainsi une diffusion des signaux. Ces deux propriétés — toutes les stations écoutent toutes les transmissions, et toutes les stations peuvent émettre — permettent d’implanter des schémas de contrôle spécifiques. Il faut noter une certaine ressemblance de ce système avec les réseaux partagés de type LAN, dans lesquels le support est partagé entre plusieurs utilisateurs. Les fonctionnalités des satellites incluent donc généralement l’accès multiple, c’est-à-dire que tous les utilisateurs peuvent s’adresser simultanément au satellite sans entente préalable entre eux, et la diffusion, par laquelle un signal réfléchi sur le satellite arrive à toutes les machines terminales situées dans sa zone de couverture. • La puissance d’émission des terminaux et du satellite doit être forte, à moins que l’antenne n’ait un diamètre important. L’importante distance à franchir entre la Terre et le satellite affaiblit énormément les signaux. Le satellite doit donc émettre avec une puissance importante, ou bien l’antenne doit être suffisamment précise pour récupérer des signaux très faibles. Par exemple, un terminal ayant une antenne de 3 dBW (affaiblissement de 3 décibels par watt) exige du satellite une antenne de 10 m de diamètre.• Les capacités de communication sont faibles. En effet, les ondes hertziennes utilisées étant inférieures à 20 GHz, il est difficile de réutiliser des fréquences car il y a une forte diffusion des ondes. De ce fait, la capacité de communication d’un satellite est très faible en comparaison de celle des réseaux terrestres. Cependant, cette restriction est partiellement levée par les satellites géostationnaires de nouvelle génération, qui utilisent un très grand nombre d’émetteurs avec des fréquences très élevées, permet- tant de décomposer la zone visible du satellite en de petites cellules de quelques kilo- mètres de diamètre et de réutiliser des fréquences presque comme dans un réseau terrestre.

Les orbites basses des LEOS (Low Earth Orbital Satellite) ou moyennes des MEOS (Medium Earth Orbital Satellite) profitent d’une meilleure réutilisation des fréquences. La distance à la Terre de 1 000 km, voire de 700 km, des LEOS permet de réaliser des cellules plus petites que celles des GEOS (Geostationary Earth Orbital Satellite). Pour des cellules de 50 km de diamètre, il est possible de réutiliser jusqu’à 20 000 fois une même fréquence. La taille des cellules envisagées par les satellites GEOS est maintenant suffisamment petite pour concurrencer les LEOS pour la réutilisation des fréquences. Par l’utilisation de fréquences situées entre 20 et 40 GHz, on peut descendre à des tailles de cellules inférieures à 50 km de diamètre. On pourrait aussi utiliser ces fréquences pour des satellites LEOS, ce qui réduirait d’autant la taille des cellules, mais cette solution n’est pas acceptable dans le cadre des LEOS. Des cellules de l’ordre de 5 km de diamètre impliqueraient une durée de recouvrement par le satellite de l’ordre d’une seconde. Il faudrait alors faire un handover toutes les secondes. Compte tenu de la proximité d’avec la Terre des LEOS, leurs principaux avantages sont un coût de lancement relativement modique et la faible puissance d’émission qu’ils réclament. Leur inconvénient majeur est occasionné par leur déplacement, puisqu’ils ne sont pas stationnaires. Les communications d’un utilisateur terrestre doivent donc régulièrement changer de satellite par des handovers, comme dans les réseaux de mobiles terrestres..

 

Cours gratuitTélécharger le document complet

Télécharger aussi :

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *