L’avènement de la médecine nucléaire, qui est l’une des plus anciennes modalités d’imagerie médicale, est étroitement lié à la découverte de la radioactivité naturelle, faite par hasard en 1895 par Wilhelm Röntgen puis présentée à l’Académie des Sciences en 1896 par Henri Becquerel. L’utilisation de la radioactivité pour tracer des molécules a été le fruit de l’intuition de George de Hevesy en 1912 aboutissant en 1943 à l’obtention du prix Nobel pour ces mêmes travaux. La découverte de la radioactivité artificielle est elle imputable à Irène et Frédéric Joliot-Curie en 1934 et les premières expérimentations en biologie, sur des animaux, ont été menées en 1939. Pour un historique exhaustif de l’imagerie nucléaire, nous invitons le lecteur à se référer à (Dubois 2009).
Concernant l’instrumentation, la première gamma camera a été développée par Hal Anger en 1958 (Anger 1958). Il a ensuite proposé de combiner deux caméras à scintillation afin de détecter des paires de photons. Le principe de la TEP était né. Le premier véritable scanner TEP a été crée par Ter-Pogossian et al. (Ter-Pogossian et al. 1975), et la même année, en 1975, été utilisé pour des applications médicales (Phelps et al. 1975).
De nos jours, l’utilisation principale de la radioactivité en médecine nucléaire est à visée diagnostique (celle qui nous intéresse dans cette thèse), cependant elle est également de plus en plus utilisée à des fins thérapeutiques, au travers de la radiothérapie vectorisée par exemple. Même si de nombreuses analogies peuvent être faites entre la Tomographie d’Emission MonoPhotonique (TEMP) et la TEP, nous nous intéresserons uniquement à la TEP dans les quatre prochains chapitres.
Dans de nombreuses applications industrielles et médicales, il est souvent souhaité d’avoir accès à des informations sur la structure interne des objets étudiés. Cependant, dans la plupart des cas, et encore plus particulièrement en médecine lorsqu’il s’agit de patients, il est très difficile voire impossible d’avoir accès à l’intérieur de l’organe sans le détériorer. Le recours à des techniques de visualisation indirectes à base de rayonnements, aux énergies ionisantes ou non, permet d’obtenir des informations sur le milieu à imager grâce à des mesures de l’interaction entre les rayonnements et la matière qu’ils traversent. L’interprétation physique de ces mesures permet d’avoir accès à des informations sur l’in vivo.
L’objectif de l’imagerie TEP est de produire un ensemble de coupes en 2 Dimensions (2D) ou de volumes 3D de la cartographie d’une fonction métabolique spécifique chez le patient. Pour cela, un agent radioactif (une molécule transportant un isotope instable), marqueur spécifique de la propriété métabolique à imager, est injecté au patient, usuellement par voie intraveineuse. Dans le cadre de la TEP, nous nous intéressons uniquement à la désintégration radioactive de type β +.
Dans un temps très court (∼ 10⁻⁹ s) et après un trajet de quelques millimètres maximum suite à la réaction de désintégration, se produit une autre réaction que l’on appelle « l’annihilation » : le positon (e +) et un électron (e −) du milieu se rencontrent, la masse de ces deux derniers est transformée en énergie avec émission de deux photons γ, chacun ayant une énergie de 511 keV. Ces deux photons γ sont émis approximativement dans la même direction mais dans des sens opposés. Suite à l’annihilation, ils se propagent dans la matière environnante. Notons que la distribution statistique de l’angle formé par les trajectoires des deux photons γ suit une loi gaussienne centrée sur 180o avec une Largeur à Mi-Hauteur (LMH) de 0, 5° (Beneditti 1950; Stute 2010). Nous parlons d’acolinéarité. Cet effet occasionne une perte de résolution spatiale qui est fonction du diamètre de détecteur. Une autre imprécision vient s’ajouter à ce phénomène et dégrader la résolution spatiale, celle du parcours en ligne brisée du positon dans le milieu, entre son émission et l’annihilation. C’est le principe de l’annihilation que nous venons de décrire qui constitue la base physique de la TEP.
Les radiotraceurs en tomographie d’émission de positons
Les radiotraceurs auxquels nous nous intéressons sont des molécules synthétisées contenant un radio-isotope à désintégration β +. L’isotope radioactif est incorporé dans une molécule organique à la place d’un atome ou groupe d’atomes stables. Un des avantages de ces isotopes émetteurs de positons est qu’ils peuvent être incorporés dans des molécules biologiques ou pharmacologiques sans en modifier les propriétés biochimiques (Semah, Tamas et Syrota 2004). Plusieurs composantes sont à prendre en compte dans le développement des radiotraceurs, qui, rappelonsle, ne sont pas présents dans la nature et doivent donc, pour la grande majorité d’entre eux, être fabriqués dans des centres équipés de cyclotrons .
Interactions photons/ matière
Une fois la réaction d’annihilation produite, les deux photons anti-parallèles vont se déplacer dans la matière jusqu’à possiblement entrer en contact avec un des cristaux d’une des couronnes de détecteurs. Plusieurs formes d’interaction peuvent avoir lieu entre le photon et des électrons de la matière. Les deux plus importantes formes d’interaction rayon/matière en TEP sont l’effet Compton et l’absorption photo électrique. Cependant les photons peuvent être soumis à d’autres interactions qui dépendent de l’énergie desdits photons.
Effet photo-électrique
L’effet photo-électrique correspond à l’absorption totale du photon γ par interaction avec un atome du milieu. L’absorption du photon γ engendre la libération d’un électron lié à cet atome, d’énergie égale à celle du photon γ absorbé soustrait de son énergie de liaison. La probabilité d’absorption par effet photo-électrique est d’autant plus importante que l’énergie du photon γ est faible, que le matériau traversé est dense et qu’il possède un numéro atomique Z grand.
Effet Rayleigh
L’effet Rayleigh est analogue à l’effet Compton, cependant la déviation du photon γ incident se fait de manière élastique. Le photon γ est dévié sans perte d’énergie. La probabilité de ces interactions croît avec le numéro atomique Z du milieu, mais reste très faible dans le cadre des rayonnements qui entrent en jeu en TEP (de l’ordre de 1% du nombre de photons γ déviés par effet Compton dans les matériaux composant le corps humain). L’angle de diffusion moyen est également très faible.
Introduction et contexte général |